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Abstract

In his fundamental paper (RAIRO Anal. Numer. 12 (1978) 325) Duchon presented a
strategy for analysing the accuracy of surface spline interpolants to sufficiently smooth
target functions. In the mid-1990s Duchon’s strategy was revisited by Light and Wayne
(J. Approx. Theory 92 (1992) 245) and Wendland (in: A. Le Mc¢hauté, C. Rabut,
L.L. Schumaker (Eds.), Surface Fitting and Multiresolution Methods, Vanderbilt Univ.
Press, Nashville, 1997, pp. 337-344), who successfully used it to provide useful error estimates
for radial basis function interpolation in Euclidean space. A relatively new and closely
related area of interest is to investigate how well radial basis functions interpolate data
which are restricted to the surface of a unit sphere. In this paper we present a modified
version Duchon’s strategy for the sphere; this is used in our follow up paper (L,-error
estimates for radial basis function interpolation on the sphere, preprint, 2002) to provide
new L, error estimates (pe[l, oo]) for radial basis function interpolation on the
sphere.
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1. Introduction

In the Euclidean space setting the so-called Duchon framework [3] is a well-known
and useful strategy for providing error bounds for radial basis function interpolation
[6,11]. The approach itself is a local-global strategy whereby a function defined on a
suitable domain Q = R? is examined locally over a collection of open Euclidean balls
B; whose union covers Q. When applied to interpolation problems, the overall
strategy allows us to glue together local interpolation error estimates (over the
Euclidean balls) and so provide a useful global error bound. In this paper we

specialise the framework to the (4 — 1)-dimensional unit sphere, S*~' cR?. In this
setting our local analysis will take place on a geodesic ball

G(z,0) = {¢eS" " g(z,6) <0}, zeS"! 0e(0,2n),
where g: S?7! x 971 [0, ] denotes the geodesic distance defined by

g(&n) =cos ' (&Tn), &nest. (1.1)
Our purpose is two fold. First, we will show that it is possible to cover S9! with a
finite collection of geodesic balls G; = G(z;, §) each with the same radius 6, such that
for any f belonging to the Sobolev space szg (891, we have

2 2

S 116ty < QAR5 (1.2)

G;
where the constant Q is independent of 0. The idea of considering local restrictions
fl G(-0) Oof a global function f'e Wzﬁ (8971 is key to the success of Duchon’s strategy
for the sphere [5]. This brings us to our second purpose which is, first of all, to
construct a linear extension operator

E:WHG(z,0))» W (s
which satisfies Ef . =/ and

||Ef||Wzﬁ(Srlfl) <IC||.}(||W2/1((;(;‘9))> for all f'e WZIJ(G(Z, 0));

where the constant K is independent of /. We remark that this extension result is
essentially known, indeed such results hold true on compact boundary free
Riemannian manifolds (see [7]). However, it is instructive to run through the
construction details for the sphere because we can then easily establish then that the
extension constant K necessarily depends on the radius 0 of the geodesic ball. The
dependence of K on 0 is unavoidable. However, if we impose a set of dense zero
conditions on the functions, that is we let & = {éi}fi ; denote a set of distinct points
in G(z,0) and consider the subspace

WY (G(z,0)) = {f e WE(G(z,0)): f(£) =0, ée 5},
then
HEf'HWzﬁ(Sd—l)<E||f'||W2ﬁ(G(210))7 for all fe Wf(G(z,H)),
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where K is independent of 6. With this established the specialization of the Duchon
framework to the sphere is complete.

1.1. Interpolation theory of Banach spaces: basic results

Let Ay and 4, be Banach spaces such that there is a continuous inclusion A4; = A.
Two such Banach spaces are said to be an interpolation pair (Ay, A1). For any f € Ay
and ¢>0, we define the K-functional as

K(tf) = inf (17 = glls, + loll): (13)

For 7€(0,1), the interpolation space A, = (Ao, A1), is defined to be the Banach

subspace of A, for which the following norm is finite:

© /K 2d 1/2
||f||1=||1<<z,f>zf|Lz((0m)f§z):</0 (*42) {) . (14)

Operator interpolation property. Suppose that we have two interpolation pairs
(Ao, A1) and (By, By) as above, and a linear operator T that maps 4; to B;, such that

NTfllg, < Ci- |/, forall fed; ie{0,1}.

Then the operator interpolation property says that T may be viewed as a bounded
linear map of A, to B; and

1T, <CoCi - [ f1ly,, for all fed.. (1.5)

The above results may be found in [10]. Our main interest lies in applying these
results to the Sobolev spaces WX (Q), where k (the order of the Sobolev space) is a
non-negative integer and Q is a bounded open set in RY. Specifically, WK(Q) is
defined to be the Hilbert subspace of functions f'e L,(Q) for which the following
norm is finite:

1wy = iy = | 2 10l | - (1.6)

0<o|<k

Due to the demand on the derivatives in (1.6) it is clear that W3"(Q)= WX (Q) for
0<k<m, and so (W' (Q), Wk(Q)) is an interpolation pair. The importance of
interpolation spaces in this case comes from the fact that

(Wh@), wr(@), = Wi %™ (@) whenever (1 — 1)k + tmeN,

where =~ denotes norm equivalence; see [7]. For this reason, the fractional Sobolev
space WE*7(Q) is defined as follows:

Wyt (@) = (W5 (Q), W31 (Q). = {Le W3 (@) I/l < 0}, (1.7)
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where, by (1.4), we have
© (K(1,f)\ dt 2
||f||W§“(Q) = (/0 ( [J ) l) (1.8)

K@.f)= f (|l —d|

ge Wi (@)

and

wi@) + gl g)- (1.9)

The development of Sobolev space theory begins with a study of the global spaces,
where Q = R?. In order to generalise the various results established for R to the case
of a bounded domain £, it is important to know whether there exists a continuous
linear extension operator

E: WKQ)-»WFR?), satisfying (Ef)|o =f, for all fe WX(Q). (1.10)

In [9], Stein proved the following remarkable theorem.

Theorem 1.1. Let Q be a bounded open connected set with sufficiently smooth
boundary. There exists an extension operator (1.10) defined for all non-negative
integers k, such that

||Ef|\W2k<Rn) <Cext ||f||W2k(Q), where Cey is independent of f.

Furthermore, if Q = B(x,r) is an open ball, then there exists ¢y >0 such that for any
e€(0,&0) E can be chosen so that the support of Ef is contained in B(x, (1 + &)r).

For an excellent overall account of Sobolev space theory see [1], Further, for a
shorter but detailed review of the material needed in this paper see [7, Chapter 2].

2. Sobolev spaces on the sphere

In order to construct a Sobolev extension operator for the sphere we must, first of
all, define the relevant local and global spherical Sobolev spaces. There are several
(equivalent) ways of defining these spaces, however the definition that we shall use
relies on the fact that the sphere is a (d — 1)-dimensional differentiable manifold.
The notion of defining a Sobolev space on a differentiable manifold was considered
in [7], we shall give an account of this theory before specialising it to the sphere.

2.1. Differentiable manifolds

Let M denote a (d — 1)-dimensional compact differentiable manifold, and suppose
that A = {U;, ¢}, is an atlas for M, i.e., a finite collection of charts (U;, ¢,), where
U; are open subsets of M, covering M, and where ¢; are infinitely differentiable
mappings ¢, : U;— B(0, I)CR“H7 whose inverses qﬁi_l are also infinitely differenti-
able. Also, let {y;: M —R}._, be a partition of unity subordinated to the atlas, i.e., a
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set of infinitely differentiable functions y; on M vanishing outside of compact subsets
of the Uj, such that ), y; = 1.
For any function f: M — R, we can use a partition of unity to write

£=3" (f). where (1,/)(m) = zi(m)f(m), meM. @.1)
i=1

This gives us a decomposition of f in terms of local functions y, f, which are
compactly supported in U;. For any function f : M — R with compact support in U;,

we can define its projection m;( f): R‘"' >R onto R?~! by

fop ' (x) if xeB(0,1),
m(f)x) = L) 01 22)
0 otherwise.

With this in place, we define the Sobolev space Wzﬁ (M) (f>0) to be the set

WEM) = {feL,(M) :n;(y, /) e WE(RTY), fori=1,...,n}, (2.3)
which is equipped with the norm

1 ey = (Z ||ni<x,-f>||iV2/f<Rz,l)> . (24)
2.2. Application to the sphere

Let7i= (0, ...,1)and § = (0, ..., —1) denote the north and south poles of the S9!,
respectively. Then a simple open cover for the sphere is provided by
2
Uy = G(ii,00) and U, = G(S,0,), where 0Ope (g 7”) (2.5)

Definition 2.1. The stereographic projection o, of the punctured sphere S7~'\{si}

onto R?~! is defined as the mapping that takes & e S?"\{7i} to the intersection of the
equatorial hyperplane {&,; = 0}, and the extended line that passes through ¢ and 7.

We remark that the stereographic projection o; based on § can be defined
analogously. Using elementary trigonometry we can set

1 1
qsl:m-@ and ¢y, =——= 04, (2.6)

tan(60y/2)

and conclude that A = {U;, qS,-}f:l isa C® atlas of covering coordinate charts for the
sphere. Hence, S?~! is a (d — 1)-dimensional differentiable manifold and so we
define the Sobolev space Wzﬂ (891 to be the set

{feLy(S™") i mi(y: /) e WX (R for i=1,2}, (2.7)
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which is equipped with the norm

s 1
1 sy = (Z ||n,~<x,-f>|iyf(wl)) : (28)
- i=1 -

This definition seems to depend on the choice of atlas used to define S¢~'. However,
it can be shown that any two spaces defined using two different atlases coincide as
sets, and norms (2.8) are equivalent, see [7] for details.

In order to define the spaces on some geodesic ball, G(z, 0), we use the coordinate
charts to specify open sets in R“~! by

Q= ¢;(G(z,0)nU;) for ie{l,2}. (2.9)
The local Sobolev space Wzﬁ (G(z,0)) of order f3 is defined to be the set
(/€ La(G(z,0)) : mi(1:f g € WH(R) for ie (1,2}, 2,20}, (2.10)

which is equipped with the norm

) 1
||f||W,”(G(z,0)) = (Z |ni<xif)|9,»||%/Vf(Ql)> (2~11)
- i=1 -

where, if Q; = 0, then we adopt the convention that || - =0.

s )
2.3. On specific local Sobolev spaces

Let A= {U;,¢;}., denote a fixed atlas for S9! and let {y,}._, denote a
corresponding partition of unity. Our aim here is to present a closer analysis of the
local spaces W¥(G(z,0)) where k is a non-negative integer.

For any function f € WX (G(z,0)), we can use the partition of unity and the atlas to
write

2 2
F=>" GiDloeonn =, )b o s ce0nv)- (2.12)
=1

i i=1

Further, we have the following useful observation.

Observation 2.2. Each y; has compact support, supp{y;} = U;. Thus, there exists a
positive constant C 4, depending only on A and the partition of unity {y,, 1}, such that
the geodesic distance of supp{y;} from the boundary of U; is strictly greater than C 4,

for ie{l,2}.

Let a€(0,1) and let V;(x) denote the aC4-geodesic neighbourhood of supp{y;},
forie{1,2}. Furthermore, if 0 < C4/3 and ze S*~!, then we have the following cases
(Fig. 1):

L. z2¢V5(1/3) = G(z,0) < V1(2/3) < Uy, and supp{y,} N G(z,0) = 0,




34 S. Hubbert, T.M. Morton | Journal of Approximation Theory 129 (2004) 28-57

-—-3‘7 supp | Jt’|}'___

Fig. 1. To illustrate the positioning of a geodesic ball of radius < C4/3.

2. z¢ V1(1/3) = G(z,0) = V,(2/3) = Uy, and supp{y;} nG(z,0) = 0,

3. zeVi(1/3)nV5(1/3) = G(z,0)=V;(2/3) = U, for ie{1,2}, and
(a) either supp{y;} nG(z,0) or supp{y,} N G(z, ) is non-empty,
(b) both supp{y;} " G(z,0) and supp{y,} N G(z,0) are non-empty.

The condition 6 < C4/3 is sufficient to guarantee that closure of G(z, 0) is a subset of
at least one of the open subsets U; or U, defined by (2.5). It is well-known (see [8])
that the stereographic coordinate charts {qﬁi}il as defined in Eq. (2.6) map geodesic
balls to Euclidean balls, thus we can deduce that

$,(G(z,0)) = = B(xi,r;) and  ¢;(G(z,Ca/3)) = B(x',17"). (2.13)

In general x,-;'éx;“7 that is, concentric geodesic balls are not, in general, mapped to
concentric Euclidean balls.

For further illustration, suppose that ze S¢~! is positioned as in case 3 above. In
this case we have the following strict inclusions:

G(z,0)=G(z,Cx/3) = Vi(2/3)cU;, ie{l,2},

and thus both Q; and @, are Euclidean balls. Indeed, taking the ¢, images and using
(2.13) gives

Qic ¢;(G(z,0)) = $,(G(z,Ca/3)) =¢;(Vi(2/3)) = B(0,1),  iefl,2}.

=B(x;,ri

I
=
=
oy
5
=

Since these inclusions are strict there exists a positive constant e4 such that

B(x,rY e (Vi(2/3))=B(0,1 —eq)=B(0,1), ie{l,2}.

l’I
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Thus, for any positive ¢<ey4, we have
Qi = B(x;,r;) =¢;(G(z,0)) = B(x;, i + ¢) cB(xlA, r;4 +¢)=B(0,1),
ie{l,2}. (2.14)

Also, when G(z, 0) is not completely contained in one of the U; (a possibility covered
by cases 1 and 2 above) then we note that supp{y;} N G(z, 0) = 0. In this case, for any
given f'e WX(G(z,0)), we can deduce that

fi= (if)odi o, = 1 6eonu, = 0- (2.15)

In summary we have (see Fig. 2):

Lemma 2.3. Let C4 be as in Observation 2.2. Then for any ze S?' and 0<Cy/3
we have

(i) at least one of the open sets Q; (i€{1,2}) as defined in Eq. (2.9), is an open
Euclidean ball, B(x;,r;);
(i) there exists a positive constant ey, depending only on the atlas A, such that, if
Q; = B(x;,r;), then B(x;,r; +¢)<=B(0,1) for all 0<e<ey;
(i) jf Q; is not an open Euclidean ball and f € WX(G(z,0)) then (3, f)°¢; "o, = O.

! i

Lemma 2.3 allows us to take the view that a Sobolev space on a suitable geodesic

ball in S?~! essentially “behaves” like a Sobolev space on a Euclidean ball in R~
The following result shows that the radii of the geodesic and Euclidean balls are
comparable.

Fig. 2. Illustration of Lemma 2.3.
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Lemma 2.4. Assume that G(z,0) < U;, i€{l,2}, and let B(x;,r;) be as in (2.13). Then
there exist positive constants ¢y and Cy such that

co-0<r<Co-0, ie{l,2}. (2.16)

Proof. The Euclidean and geodesic distances (1.1) between any two points &, e S9!
are related by the formula

d@mnanMm<“"§

Furthermore, if &, ne S“~"\{7i}, we have the following relationship from [8]:
(14 llos( @) (1 + llos(m) )2

We remark that the analogous relation holds for &,ne S "\{s}. Let & neG(z,0)
then, without loss, we shall establish (2.16) for i = 1. The above relations and (2.6)
yield

an(252)) - tan(0o/2)116, (¢) — )] |

2 (1 + tan(00/2)||1 (1) (1 + tan(00/2)]|¢, (n)]}) /2

Since ¢, (U;) = B(0, 1), we can maximise and minimise this expression by assuming
that ||¢,(&)|| = ||¢,(n)|| equals 0 and 1, respectively. This gives

sm%wm@mmm<mm<@”§<mewmwx> on

For any o€ (0,n/3), the small angle result, o/2<sin a <o, implies that
sin 6o || (£) — ¢1 ()| <g(&,m) <20

and
g9(&,m)<4tan(0o/2)[|¢,(S) — by (n)||<8 tan(0o/2)ry

Since we can write

2rp= sup [[¢(&) —¢ ()] and 20= sup g(&n),
EneG(z,0) EneG(z,0)
the proof is completed by taking the supremum on the left-hand sides of the two
inequalities above. We find that ¢y = (4 tan(0y/2)) " and Cy = (sin0y)~'. O

3. Duchon’s inequality for the sphere

The original Duchon framework makes use of a scaled integer lattice in R? to
provide a regular mesh with a specified spacing. While we do not have quite such a
regular mesh on the sphere, we can find a quasi uniform mesh that will satisfy our
requirement. An example can be obtained by inscribing a d-dimensional cube inside
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S9-1 with a scaled integer lattice embedded on each side, then radially projecting the
lattice points to S9!,

Lemma 3.1. Let d>2, be an integer and set

M=2vVd—-1 and 6;= !

443/
Let M| be an arbitrary positive number, 0€ (0,7/3) and set
0
hy = ————. 3.1
T M + M+ 4 (3.1)

Then, for any he(0,hy), there exists a set of points Z, =S~ such that
s = Gz Mn).

ZEZ/,

Let F, denote the characteristic function of a set A< S\, There exists a positive
integer Q independent of h such that

S Foequ<Q, where M =M + M. (3.2)

zeZ,

Further, the cardinality of Zj, is bounded above by CQh’M’l), where Cg is independent
of h.

Proof. Let M, be a given positive constant, 0€(0,7/3) and let Ay be as in (3.1)
and choose /e (0,h). To specify a mesh Z;, for the sphere we inscribe a d-
dimensional cube inside S?~!. This cube will have side 2/ Vd. Let n,>2 denote the
integer such that

(3.3)

On each face of the inscribed cube we place a regular mesh of dimension d — 1

such that each subcube has side 2/(n;V/d). That is, we place a lattice of points
isomorphic to

2 [ 11 r“
nvd vd' Vd
on each side of the cube. We now define Zj, to be the radial projection of these points
on the cube onto S9!

Suppose that two points x; and x; lie on one side of the inscribed cube and are a
distance b apart. Let ¢, and &, be the radial projections onto S~! of x; and x,
respectively. Consider Fig. 3. The point ¥ is the closest point to the origin from the
(extended) line connecting x; and x,. Further, r; and r, represent the respective
distances of x; and x; relative to X (with the convention that 1, >0). We observe that
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Fig. 3. Illustration of quasi-uniform mesh proof.

the distance a of X to the origin satisfies

1
—<a<l. 34
Nz (3.4)

The geodesic distance g(&;, &,) is given by
g(&,&) = |tan™! o ant
a a

Employing the mean value theorem we can deduce that

b 1 1 jd—11 |d—1
9(51752):;'?62, for some fe<a\/d,a\/d . (3.5)

Maximising the RHS of (3.5) and using (3.4) gives g(§1,§2)<§<b\/3. Similarly,
minimising the RHS gives
b ad? b 1 b
>_. ~. .
92 T =17 2d =1 2d

Thus, we have shown
b

ﬁ<9(51752)<b\/3~ (3.6)

For any e8! let z: denote its closest point from Zj. Let C? denote the
d-dimensional cube inscribed into S?~!, then we can view the radial projection as a
mapping Proj : C¢— S9!, In particular, let xeC? be such that

Proj(x) = ¢&.

The point x necessarily lies within a (4 — 1)-dimensional subcube, which contains the
lattice point X such that

Proj(x) = &..
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The furthest that x can be away from X is bounded above by % A /%, the diameter of
the subcube. Hence, by (3.6) and (3.3), any ¢eS? ! is such that

2
mm g(z, &) = g(z¢, )<n—\/d— 1<2hvd — 1.

h

zeZy

This proves the first part of the theorem for M = 2v/d — 1.
The minimum separation distance of the lattice points on the surface of the

inscribed cube is 2/(n;,v/d). Therefore by (3.6) and (3.3)

l 2 1 1 h

We now show that the second part of the theorem holds by an elementary surface
area argument. Let ¢€S?"! and suppose that

> Foeimemm(€) =N,

zeZ;
that is,

g(&,z)<(M + My)h = Mh, for z;eZ;, i=1,...,N.
This implies that

G(zi,04h), =G(E, Mh + 64h), for i=1,...,N. (3.8)

For any geodesic ball G(&,0), with ¢eS?! and 0e(0,7/3) there exists
positive constants C{ and C5, depending only on d, such that its surface area is
bounded by

C?6d1</< ) W4 l\cu Hd l7 CES(I—I.
&0

We note that, as a consequence of (3.7), the balls G(z;,d,h) (i=1,...,N) are
disjoint. Thus, by (3.8), we can conclude that the area of G(&, Mh + d,h), which, by
the choice of 7, is bounded above by C5 - (Mh + 5dh)d71, must be at least NC{ -
(64h)"~". This implies that

NCY - 347 <t (W + 84)"!

Therefore, there exists an integer Q that is independent of & and /4 such that

c d-1
N<—= 1 <0.
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To finish the proof we let |Z;| denote the cardinality of the mesh. Then we have

1Zil - () = Y cf(ih)!

ZEZ/,
< / dorg (&) = / Foeiom (E)derg—1 ()
ZEZZ/, G(z,Mh) ZEZZ/, Sd-1 ( )
:/ ZFG ) () dwg1(8) < Qg
Sd-1 =z,
<Q

That is,

defl —(d— —(d—
'Zhg(caml W = Coh™ !
1

where Cg is independent of 4. [J

We are now in position to prove the main result of this section.

Theorem 3.2. Let d>2, be an integer. Let >0 and let M| be any positive number. Let
hy be as in (3.1) with 0 = C4/3, that is

_ 1
Ca where M =2vVd — 1+ My and d,

h = = = —
O T 3(M+8,) 4d3/

Let he(0,ho) and let Z,, denote the corresponding quasi-uniform mesh for S~ from
Lemma 3.1. Then, for any f € WZI}(S“I’I)7 we have

Z ||f||§/[/2/j(c<z_]\;[h))gQ”f”i[/z/’(Szi—l)v (39)

ZEZ/,

where Q is the constant (independent of h) from Lemma 3.1.

Proof. For zeZ;, and ie{1,2} we shall set

Qi(z) = $:(G(z, Mh) n U;) < B(0, 1). (3.10)

We begin by proving the result in the integer case. Thus, for any fe WX(S?!), k a
non-negative integer, we use (2.11) and consider

2

2 2
Z ||f||w§(G(z,Mh Z Z |7 (i f |Q ||w§(g,-(z))- (3.11)

zeZ, i=1 zeZ,



S. Hubbert, T.M. Morton | Journal of Approximation Theory 129 (2004) 28-57 41

Let F, denote the characteristic function of a set AcR”. For ie {1,2}, consider any
function ge W§(RY""). Using (3.10) and Lemma 3.1 we can write

2
Z ||Q|Q ||Wk = Z Z ||Dag|Q,-(:)||L2(Q,(z))

zeZ) zeZ; |o|<k
=Y Y [ (@dlo () 2ax
lo|<k zeZ i(2)
> [ Fop@ i) dx
o] <k RT zeZy
P 2 2
<O Y Dl ey = Qllgl sy (3.12)
lo| <k

Applying these arguments to g = m;(y,f) € WX(R?™!), and substituting into (3.11)
provides the result for the integer order spaces.

Since Mh< Mhy< C4/3, we can use Lemma 2.3(iii) to conclude that if Q;(z) is not
an open Euclidean ball then m;(y;f)g,.) is the zero function. In particular, for any

fe Wkt (s9°1), where 1€ (0, 1), we can write

2
Yo W ey = 2 2wl (3.13)
z€Zy i=1 ze&(i)

where
En(i) ={z€Z,:Qi(z) is an open Euclidean ball}. (3.14)

Fix ie{1,2} and let f; = n;(y; /). Then using (1.8) we have

* dt
2 g 2
> Wiawlaem = > | Klflow) s
)

ze&(i) ze&(i

/ T Kl s (3.15)

ze&(i)

Since ©;(z) is an open Euclidean ball for ze&;(i) we have that
Wy (Qi(2) = WA (R lg ) (see [2)).

Furthermore, the “restriction of functions from R~! to Q;(z)” can be viewed as a
continuous linear operator from W5*(RY™") to WA™1(Q;(z)). This implies that we
can rewrite the K-functional as

K(Z,fi|g,(z)) W,}HfRd y (I1(f: g)|g,(z)||W2k(Q,<z)) + t||g\g,(z>||W§'+‘(Q,-(z)))~
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Thus, by choosing any e Wé‘“ (Rd_l) we have the following bound
Z (K([Lfi‘ﬂ,-(z)))z
ZE(‘,‘/,(i)

N - 2
< Z (IS = Dlallwr@ e + dlae e @)
ze&,(i)

Expanding the square in the above inequality gives rise to two square terms and a
cross term. We investigate these individually.

Square terms.

Z (i = Do)

ZEE/,([)

2 -2
W) S @ I[fi — g||W§(Rdfl)-

This follows by the integer order argument (3.12), and similarly we have

~ 2 ~12
ZZ Z Hngi(z>||W2k+l(Q[(Z))<Q . t2||g||W§+l(Rd—l>.
ze&(i)

Cross term.

2t Z (i = Dyl @2 1910, w1,
ze&,(i)

1/2

~ 2 ~ 2
<2 Z (/i —9) Q,-(z)”Wzk(Q,-(z)) Z ||g|g,(z)||W§+l<g,.(;))
ze&,(i) ze&(i)

< Q- 211 i = gl e 19l wasr or)-
This follows by applying the Cauchy—Schwarz inequality and then employing integer

order argument (3.12). Piecing these individual bounds together allows us to
conclude that

12

2 ~ ~
Z (K(t’ﬁh)i(z))) <Q1/2(||fi - gszk(Rd*l) + Z”g”Wé(“([RE"’I))'
:e&,(i)

Taking the infimum over ge WA+ (R?~!) allows us to deduce that

> (Kt flg) <Q-K(1.f) . (3.16)

265/,([)

Substituting (3.16) into (3.15) allows us to conclude

2 0 2
K(t,/;)\° dt
E ||f||%4/§‘f(c<;,M/1))<Q E /0 (—(ﬂ )) 7: Q‘|f||%/V2kH(s«f—l)- U
i=1

ZEZ/,
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4. A Sobolev extension theorem for the sphere

The aim of this section is to construct a continuous extension operator
EG(-0): WE(G(z,0)) > W5 (S9°1), with the property that

(Eg-0) )=y = for all e W5(G(z,0)).

In view of (2.12) we start by extending the local functions (; f)o¢;" lo, € WK () to
WERI) for ie{1,2}.

Remark 4.1. If 6<C,/3 then, by Lemma 2.3, we can restrict attention to the case
where ; is an open Euclidean ball, since otherwise (y, f)o¢; | q, 1s the zero function
and thus has a trivial extension.

For the unit ball B(0,1) and for ¢>0 sufficiently small, we can appeal to
Theorem 1.1 for a continuous extension operator Ep( ) : WX(B(0,1))— Wé‘(R“”l)7
where

supp(Epo,1)f)=B(0,1+¢) for all fe wk(B(0,1)).

To define an extension operator on B(x,r) we use the coordinate transform

o(y)=ry+x, forr>0 and yeRI!, (4.1)
and set

Epn f(y) = (EB(O,l)(fOU))OU_l(J/) yeR (4.2)
In addition, we have that,

supp(Ep(x) f)=B(x,r(1+¢)) for all f'e WE(B(x,r)). (4.3)

Remark 4.2. Let ze S9!, < C4/3, and assume that Q; = B(x;,r;) = B(0,1). We can
use Lemma 2.3(ii) to choose any ¢<ey4 such that

Supp(Ep(x,n).f) = B(xi, 1i(1 + &) = B(x;, 1: + ) = B(0, 1).

Thus, by choosing a fixed positive ¢ <e 4, which is independent of the centre z of the
geodesic ball, we can ensure that Ep,, ) f is compactly supported in B(0, 1), for all
f e W5 (B(xi,r1)).

We are now in a position to prove the first extension theorem.

Theorem 4.3. Let ze S’ and 0<Cy4/3, then there exists an extension operator
EG(-0) : WE(G(z,0)) > WK(S97") satisfying:

L (E0)f)|Gg) =1 for every f € WF(G(z,0)),
2. ||EG(Z’9)f||Wé((Sd—1) <IC||f||W2k(G(279)), where K is independent of f and z.



44 S. Hubbert, T.M. Morton | Journal of Approximation Theory 129 (2004) 28-57

Proof. Let F, denote the characteristic function of a set A< S?'. Let
feW¥(G(z,0)) and peS9~!, then we define a candidate extension operator
Eg-0): W3 (G(z,0)) - W5(S") by

20 /W)= Ea((1:/)9:"10)(¢:(p)) - Fu,(p). (4.4)

1M~

Using Remark 4.1, we need only focus on the case where €, is a Euclidean ball. Thus,
we shall assume that z is located as in case (3b) see Fig. 1. That is, ze Uy n U, and
Q; = B(x;,r;), for ie{1,2}. In this case we have

2
f(p) = Z EB(x,v,i';)((Xif)o¢i_l|B(x,-,r,~))(¢i(p))> (45)
i=1

where Ep(,, ) : WX (B(xi,r:)) — WX(RY") is given by (4.2). In addition, we also
choose ¢>0 as in Remark 4.1 to ensure that

Supp{EB(xi,r;) ((Xif)od)i_l |B(x,-.r,v))} < B(Ov 1)7 for ie {1 ) 2} (46)

To prove part 1 we assume that pe G(z,0), that is, ¢;(p)€B(x;,r;), for ie{l,2}.
Then, by Theorem 1.1, we have

Epts, (1:1)°67 55, (0:0)) = (1107 (di(p)) = (1:1) ()

hence

-0 f(p) = Z f(p) as required.

i=1

To prove part 2 we use (2.8) and consider

2
1Eg(-0) f [t (sin) = leﬂ/ 1B 60 /) s o)

2
2
Z ||7I, 7] T EG )||W§(R‘H)'

We note that ;(y;) € Cy° (R?"") and so there exists a constant K, depending only on
A and the partition of unity { ,(]} _, such that

2
EG(0) Sl wr(si)

2
2
<K, Z 17 (Eq0) /)l
i=1
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2/cx

2 || 2 2
£33 Es Vo ) (Db ) by (4.5)
: i=1 W?(Rd—l)
5 2
= Z Z Epxry (i f)e ¢i | (x,-,n))((lsiod)fl) by (4.6)
j= i= Wé((B(O.l))
2

2
_ 12
21: 1EB(x,.r,) o7 ) (Pid; l)Hng(B(o,l))-
-
Since A ={U,, qbi}f:l is an atlas for S9!, the coordinate changes, qﬁio(b;l :
¢;(UinUj) - ¢;(UinUj), for i#je{l,2}, are infinitely differentiable. Therefore
there exists a constant K4, depending only on A, such that

2. 2
2 -
||EG(Z,0)f||W2"(S"*1)< 2K,K 4 Z Z ||EB(x,-,r,-)((Xif)°¢i 1|15; )”W B(0,1))

2
<K A S N Esiry (Vo0 i sy (47)
=1
The function (y;f)o¢ |B (v, Delongs to WX (B(x;,r)), for ie{1,2}. Thus, we can
appeal to Theorem 1 1 to deduce the existence of a constant Cg, independent of
(i f)od; |(x,.ry) (and therefore of f), such that

2
|EG(-.0 f||Wk sy SHCKACS Y (1)o7 sy |2W2k(3<x,,r,-))~
i=1

Taking square roots gives
||EG(:,('))f||W2"(S"*1) <K||f||W2"(G(:,H))7 where K = Cexi\/4K, K 4, (4.8)

and this completes the proof for z as in case (3b); the proof for the other cases
follows in a similar, but simpler, fashion. [

We now turn to the extension constant K (4.8) of the operator Eg(.g). In
particular, we shall investigate its dependence upon the geodesic radius 6. By
inspection, it is clear that the factors KC, and IC 4 are both independent of §. However,
the factor Cex may depend upon the radii r; or r, and these are both related to 0 by
(2.16). Indeed, this dependence is established as follows.

Lemma 4.4. Let k>d?1 be a non-negative integer and let Ep,:
WE(B(x,r))— WERI™") be a linear extension operator such that, for all
feWs(B(x,r)),

1Esen S sy <Contl L i sy, (4.9)
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Then the extension constant Cexy >0 is necessarily dependent upon the radius r of the
ball.

Proof. Since k>%5! the Sobolev embedding theorem [2] tells us that W5 (R‘™") is a
space of continuous functions. Hence, there exists a constant ¢>0 such that

e[S sy, for all feWF(RT!) and yeR". (4.10)

Let E denote a continuous linear extension operator and choose /'€ WX(B(x,r)) to
be f = 1. A combination of (4.9) and (4.10) yields

< Epeer [ ws -1y <Coxt 1/ 1wt (8xry)- (4.11)

Now since || /]| #(p(x,)) —0 as r—0 we can deduce, from (4.11), that the constant

Cext must grow to oo as r—0. Hence Cey,; is necessarily dependent on the radius of
the ball. O

5. A restricted Sobolev extension theorem

We will now show that if Eg. g is restricted to a certain Sobolev subspace, then it

has an extension constant K which is independent of both z and 6. We begin, again,
by investigating the analogous problem in the Euclidean setting.

5.1. The Euclidean case

Let k>%, x*eR!, and consider the extension of continuous functions from
WE(B(x*,r)) to WX(RI!). To simplify matters, we shall assume that

B(x*,r)= B(0,1) and focus only on the operator

Egen f(0) = (Eon(fo0))ea™ () yeR,
where Ep1) is supplied by Theorem 1.1, and where o is given by (4.1). One
advantage of this construction is that, for any /'€ W¥(B(x*,r)), we can consider the

translated and scaled function foo e W¥(B(0,1)). In particular, we have the following
useful change of variables result.

Lemma 5.1. Let «eN¢ be a multi-index with |o| <k. Then, for any f € W&(B(x*,r)),

we have

||D1f||iz(3(x*,r)) = V(dil)izla‘HDa(fOU)Hiz(B(o,l))a (5.1)
and similarly, for any f € W§(R™), we have

1D 117 gty = 021D (foo)lI7, oy (5.2)

Proof. See [4, Lemma 4.9]. [
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Let X = {xi}fil denote a set of distinct points in B(x*,r). We measure the density
of X in B(x*,r) by assigning the local Euclidean mesh norm

p=p(X,B(x*,r)) = sup min{||x —y||:xeX}. (5.3)

yeB(x*r

Remark 5.2. Assuming that the set X = {x,-}f-V: ; has mesh-norm p in B(x*,r), then its
inverse image ¢~ !(X) has mesh norm p/r in B(0,1).

We have shown, in Lemma 4.4, that the extension constant Cex Of Ep(\
necessarily depends on r. To overcome this, we consider the following subspace:

WH(B(x",r)) = {fe W5 (B(x",r): f(x) =0, xeX}, (5-4)

where X is a set of distinct points in B(x*,r). We aim to show that if the local
Euclidean mesh norm p of X is small enough then the restriction of Ep- ) to

WE(B(x*,r)) has an extension constant Cex independent of both x* and r.
We begin by providing some background material. First of all, for a fixed integer

k>1welet ITj_ (IRd ) denote the space of all d-variate polynomials of degree at most
k — 1. The dimension of this space is

k—l—d—l)

p (5.5)

Mkfl = dim Hk,l(Rd) = <

Let X = {x,-}fz"l*‘ denote a set of distinct points in IRd, we say that the set Xj is IT;_-
unisolvent if the only pell;_;(RY) to vanish on X, is the zero polynomial.
Furthermore, if X; = B(x*,r) then we say that the Mj_;-tuple

(X1, .oy Xpr, ) € B(X™,r) X -+ x B(x",r) = B(x*,r)M"’1

M., times

is T1y_j-unisolvent in B(x*,r). Let U denote the set of all Mj_;-tuples,

(X], ~--7ka,1)e RY % ... x RY = (Rd)M""_
N’
M), times

that are ITy_-unisolvent in R?~", that is,
U={(x1, ..., xm,) {x1, .-, xp_, } is TIx_j-unisolvent}.

We note that U/ is open (its complement is the set of solutions of algebraic equations).
Thus, for a given (xi, ...,xu,_,) €U, there exists >0, such that

B(x1,0) X -+ x B(xp,_,,0)<U. (5.6)

Thus a II;_;-unisolvent set of points remains II;_;-unisolvent after a small
perturbation. This observation is summarised in the following result.
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Lemma 5.3. Let
(X1, ..., Xy, )€ B(0,1) x --- x B(0,1) € B(0, 1)

M., times

be Ty -unisolvent in B(0, 1). Then there exists ;1 >0 such that B(X;,5x—1) = B(0, 1),
for 1<i< Mj_y, and so that each element of

W= B(x/‘hékfl) X e X B()equaékfl)a
is Iy_-unisolvent in B(0,1).

The next result shows how a sufficiently dense set of points in B(x*,r) can be
mapped, under ¢~!, to a set in B(0, 1) containing a IT;_;-unisolvent subset.

Proposition 5.4. Let W, Mj._| and 6, be as in Lemma 5.3. Let X = {xi}fil denote a
set of N = My, distinct points in B(x*,r), with local mesh norm p (5.3). If p/r<dy_1,
then there exists My distinct points,

i, cowa Yo' (X) = {o7 ' (x1), ..., (xn)},
such that (wi, ..., wp, ) EW.
Proof. By Remark 5.2, the mesh norm of ¢~!(X) in B(0, 1) is p/r. Thus, for each of
the points X;e B(0, 1) from Lemma 5.3, we have that

12}i<rlzv o™ (x;) — Xil|<p/r<dk—1, for 1<i<My .

In other words, each B(X;, ;_;) contains at least one element, w; say, from ¢~'(X),
and hence the result follows from Lemma 5.3. O

To complete our background work, we state a specialisation of an important result
due to Duchon [3].

Lemma 5.5 (Duchon). Let k>% be a positive integer, let B(0,1)cRY™" and let W

be as in Lemma 5.3. Then, for each i<k, there exists a constant Cy (i) depending on
B(0,1), W, k and i such that

> D11z, m0,0) <Cw(i) - > |IDPf]

Bl=i |Bl=k

iz(B(O,l)) (5.7)

for all  feW¥(B(0,1)) such that f(w;) =0, (1<j<My_), for some
(Wi, cooyWar,_, ) EW.

Proof. See Section 2 of [3]. O

We are now able to prove the following restricted extension theorem.
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Theorem 5.6. Let k>% be a positive integer, and let W, My_ and oy_, be as in

Lemma 5.3. Let X denote a set of distinct points in B(x*,r) =R~ whose mesh norm p
(5.3) satisfies

p/r<Op-1.
Let Epy. y: WE(B(x*,r)) > WE(RI™1) be the extension operator given by (4.2). Then
there exists a constant Eext independent of x* and r such that

||EB<X*-,’)].||W§(R‘I’])gae’(tHfHWzk(B(x*,r)) Jor all fe Wf(B(X*J’))- (5.8)

Proof. Let fe Wé‘(B(x*,r)), then, applying (1.6), (5.2), and (4.2), respectively, we
have

2 —1)— 2
Eser ) S/t ey = > ACDEND (Ego ) (fo0)|[7 per)-

0<la|<k
Furthermore, since re (0, 1) we can deduce that
||E3<x*_,)f||2w§(RH> <rld=D=2k ||EB(0,1)(J{°O-)|‘%/Vz"([R”’l)'
By Theorem 1.1 there exists a constant Cpg 1), independent of x and r, such that
1Ese ) f1Bpsae 1y < Cooy - 7 -] o0l s 0.1 (5.9)
We observe that:

(i) The assumption p/r<dy_; implies, by Lemma 5.4, that there exists a set of distinct
points {wy, ..., wy,_, } =o' (X), such that (wi, ..., wy, )eW<B(0, 1),

(i) The function foce WX(B(0,1)) vanishes at each point in ¢~'(X), and hence at
eachw; fori=1,..., M;_;.

Together, (i) and (i) allow us to apply Lemma 5.5. Thus, setting 4" =
max{Cw(i):i=0,...,k}, we can employ (1.6), (5.7) and (5.1) to deduce that

2 —(d— 2k 2
170\ saony < 47r @D HZ 1D 11z s
o=k

< Ay d-D+2%k Z ||Daf||%2(8(x*,r))'

0< el <k
That is, we have
2 —(d- 2
||f°0||W2k(B(o,1)) <d” l)+2k||f||W2"(B(x*‘r))' (5.10)

Substituting (5.10) into (5.9) and taking square roots yields,
||EB(x*.,r)f||Wé‘(lR"’l) < CB(O,I) AV ||f||W2k(B(Y*I))

We note that the constant 4" is independent of x* and r, and hence, setting Em =

\/Cso,1) - AV completes the proof. [
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5.2. The spherical case

In  Theorem 4.3, we constructed an extension operator Eg(p):
WX (G(z,0)) - W5(S91). Following the proof of this theorem to Eq. (4.7), we have

2

1Eoe0. 1Byt sy SYCKa S 1 sy Flls sy (5.11)
i=1

where
ﬁ = (Xi.f)o¢;1|3(xi‘r,-) for ie{172}7

and where the constants /U, and K 4 are independent of z and 0.

Observation 5.7. If, for a given feWX(G(z,0)), the projected functions
fie WE(B(x;,11)), i€{1,2}, vanish on a sufficiently dense set of points in B(x;,r;),
then we could use a combination of Theorem 5.6 and Lemma 2.4 to conclude that Eg. g
extends f independently of z and 0.

The above observation provides us with the strategy to prove the first restricted
extension theorem for the sphere. To begin with we let & = {f,}fil denote a set
distinct points on S?~! whose density is measured using the mesh norm

h=h(E,8"" = sup min{g(n,&) =cos ' (y7¢):¢e B} (5.12)

neSi-
For a positive integer k>%, we consider the following subspace
W3 (G(z,0)) = {/ e W5 (G(z,0)) : /(&) =0, ¢&e 5. (5.13)
Suppose that feWX(G(z,0)). Then, for ie{l,2}, the projected functions

f,-:(Xi_f)o¢fl|3(xhri)eWé‘(B(x,-,rl-)) vanish on the transformed set of points
given by

X)) = {:(&): ¢e E0G(z,0)} < B(xi, ). (5.14)
In summary, we conclude that

JeWF(G(z,0)) = fi = (1:0)°0; | puy € W3 (Blxiry)),  for ie{1,2},
where

WE(B(xi,ri)) = {f e WE(B(xi,1:)) : f(x) =0, for xeX\"}. (5.15)

For ie{1,2}, we measure the density of X£i>7 which we assume to be non-empty, by
assigning the local Euclidean mesh norm

pi= sup min{|lx— ¢,(&)]|: éc EnG(z0)}. (5.16)

xe€B(x;,ri
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Remark 5.8. Let k>% be a positive integer and let d;_; be as in Lemma 5.3. Let
feWE(G(z,0)) and assume that the local Euclidean mesh norms (5.16) satisfy
%<5k,1, for ie{1,2}. (5.17)

1

Then, using Theorem 5.6, there exist a constant Eext, independent of x; and r;,
ie{1,2}, such that

2
||EG(270)f||2W2"(S“*‘) <4IC,KAC, Z |‘/{i‘|%/V2’"(B(xi,ri)) = ’C2||f||2W§(G(z,9))-
i=1

where K = VAK, K AEext is independent of z and 6.

Remark 5.8 provides the route to the initial restricted extension theorem for the
sphere. In order to make this rigorous we require the geometrical arguments which

relate the density of Z in S?~! to the densities of the Xé” in B(x;,r;), for ie{1,2}.

Geometrical arguments. Let = = {é,}fi , denote a set of distinct points on S9!
whose density is measured by the mesh norm % given by (5.12). To measure the
density of Z locally, on some G(z, 6) say, we assign a local mesh norm by

hy = sup min{g(n,&): e EnG(z,0)}. (5.18)
neG(z,0)

The following result provides a relationship between /4 and /.

Lemma 5.9. Let = be a set of points on S=" with mesh norm he (0,7/6). Let ze S?~!,
0=3h and let hy denote the local mesh norm of £ G(z,0). Then

h <4h. (5.19)

Proof. Let ne G(z,0) and let £ be a closest point to n from Z. Then, by (5.12), we
have g(n,&)<h. We prove the lemma by splitting into two cases based on the
position of &.

(a) If £ G(z,0), then min{g(n, &) : E€ EnG(z,0)} <h<4h.

(b) If ¢ G(z,0), then g(&,z)=>0=3h. Thus, there exists a point 1’ € G(z, 0), lying
on the intersection between the boundary of G(&, 2h) and the geodesic arc connecting
z and ¢, (see Fig. 4). That is, #' satisfies

9(z,8) = g(z,n') + g, &) = g(z,1') + 2h.

Furthermore, there must exist a &€ =, such that g(y’, ') <h. The triangle inequality
allows us to deduce

9(z, 8V < g(z,n) + 9, &) = g(2,&) = 2h+g(n, &)
<g(zn) +9n,¢) —h<0+h—h=0.
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G(z,9)

G(&,2h)

g&.M<h

Fig. 4. Illustration of Lemma 5.10.

Thus, ¢ € G(z,0), and this implies

g(n.&)<g(n, &) +9(&n') +9(n', &) <h+2h+h = 4h.
Hence min{g(n, &) : e EnG(z,0)} <4h. These arguments hold for any e G(z,0)
and so, by (5.18), the proof is complete. [

The next result shows how the geodesic mesh norm of Z relates to the local
Euclidean mesh norms of the Xgi), for ie{1,2}.

Lemma 5.10. Let = be a set of points on S*~! with mesh norm he (0,1/6). Let ze S?~!,
0=3h and assume that G(z,0)c U, ie{l,2}. Let p; denote the Euclidean mesh norm
of X(SU = ¢,(EnG(z,0)) given by Eq. (5.16), then

p;<4Coh, for ie{l,2}, (5.20)

where Cy is as in Lemma 2.4.

Proof. Let xe B(x;,r,), then n = ¢; ' (x) € G(z,0). By Lemma 5.9, there exists a point
&e Z such that g(n, £) <4h. We note that 42<2n/3 and so we can use Lemma 2.4 to
deduce that

min - 6,01) = $:(0)

te EnG(z,

: — $(8)]| <4Coh.
min - [lx = @Ol <4Coh

This result holds for all xe B(x;,r;) and so proves the lemma. O

=
e

The extension theorem for integer order spaces. Let = denote the usual set of distinct
points in S“~! with mesh norm ke (0,7/6), given by (5.12). Assume that 0 < C4/3,
and let R>0, be such that § = RA. Using Lemma 5.10, we can deduce that if R>3,
then p;<4Cj - h, for ie{1,2}. Furthermore, using Lemma 2.4, there exists a constant
co>0, such that

pi<4C0~/’l<4C0'h 4C0

X

r; i cRh R

for ie{1,2}. (5.21)
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Thus, if R>3 and R>4Cy/codx—1 then condition (5.17) holds. In view of this, by
setting

4
Ro :maX{S, 2! } (5.22)
Co0k—1

we are able to formulate the following extension theorem.

Theorem 5.11. Let k >% be a positive integer and let E denote a set of distinct points
on S~ whose mesh norm h satisfies

(i) he(0,7m/6), (i) Roh<C4/3,
where Ry is given by (5.22). Let ze S, 0 (Roh, C4/3), and let Eg(.0) denote the

continuous extension operator given by (4.5). Then there exists a constant IE>07
independent of z and 0, such that

||EG(z,0)f||W§(SH)<’E||f||W§((G(:,9)) fe Wé‘(G(z, 0)). (5.23)

Proof. The conditions of the theorem guarantee that the local mesh norms { p,}f:l of

the transformed point sets {X, (Si)}?:l satisfy (5.17). The theorem then follows from the

arguments set out in Remark 5.8. [J

The extension theorem for fractional order spaces. We motivate this section by
recalling some standard Banach space theory.

Definition 5.12. A closed linear subspace A of a Banach space A is said to be a
complemented subspace of A if and only if there exists a continuous projection P on 4

with P(4) = 4.

Let (Ag, A1) be an interpolation pair and let P denote a projection operator acting
upon both A4y and A4;. Since a complemented subspace of a Banach space is closed,

we can consider the spaces Ay = P(4y) and A4, = P(4,) as Banach space in their
own right, with the inherited norms || ||, and [ -||,,, respectively. Furthermore,

(ZO, A 1) is itself a valid interpolation pair. The following result is due to Triebel, see
[10]; Section 1.17.

Theorem 5.13. Let {4y, A} and {ZO,ZI} denote two interpolation pairs, where Ao

and A, are the complemented subspaces of Ay and A, respectively, with common
projection operator P. Then, for t€(0,1), we have

A, = (Ao, A1), = P(Ag, A1), = P(4,). (5.24)

That is, A, is the complemented subspace of A, with the same projection P.

We illustrate this material with the following Sobolev space result.
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Proposition 5.14. Let k>3, be a positive integer. Let X = {x,}fil denote a set of
distinct points in B(x*,r) =R, The familiar Sobolev subspace

WE(B(x",r)) = {fe W¥(B(x",r)):f(x) =0, xeX},

is a complemented subspace of W¥(B(x*,r)).

Proof. We can choose a set of N linearly independent cardinal functions
7:€ WF(B(x*,r)) with the following properties:

() 7i(x;) =1,fori=1,...,N,
(ii) ; has compact support K;= B(x*,r) and K;nK; = 0 whenever i#j.

Then, since k>%, we can define a projection operator on WX (B(x*,r)) by
N
Qu:f > flx) (5.25)
i=1

We note that the null space of Qy is precisely Wé‘(B(x*,r)). Thus, setting Py =
7 — Qy, where Z denotes the identity, completes the proof. [

For k>4l we can deduce that (W§(B(x*,r)), Wst'(B(x*,r))) is a valid

interpolation pair. Thus, for te€(0,1), we can define its interpolation
space

W (B, ) = (B, 1), WA (B, 1)), (5:26)

In particular, as a corollary of Theorem 5.13, we have the following result.

Theorem 5.15. For k>3, and ©€(0,1), we have that

WA (B(x", 1) = {f € WE(B(x',r)) 1 /(x) =0, for xeX}.

The final aim of this paper is to prove a fractional version of Theorem 5.11. We
begin by considering the Euclidean setting where we have the following intermediate
results.

Proposition 5.16. Let t€(0,1) and k>% be a positive integer. Let Ep,- , be the
extension operator given by (4.2), which maps Wit(B(x*,r)) to WAT(R'Y), for
i=0,1. Then

() Ep(epy: WATH(B(x*, 1)) > W5 (R,

(11) (EB(x*,r)f)|B(x,r) :fv fOV a”fe Wéﬁ_r(B(X*a r))>
(i) || Ef ||W2A>+1(Rd—l) <cOIf ||Wé(+r( B(x ) Where % is independent of f.
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Proof. Parts (i) and (iii) are true by the operator interpolation property. Also,
property (ii) holds for all of the integer order spaces (cf. Theorem 1.1), it also holds

for the fractional spaces since Wi ¥ (B(x*,r))c WK(B(x*,r)). O

Proposition 5.17. Let t€(0,1) and k>%! be a positive integer. Let X = {xi}fil
denote a set of distinct points in B(x*,r) < B(0,1) whose mesh norm p satisfies

b s, (5.27)

where Oy is as in Lemma 5.3. Then there exists a constant Eg{ independent of x* and r
such that

1B ) /Nl sy <Cotll fllwioe(ae )y S €WET(BGE, 7). (5.28)

Proof. We recall, from Theorem 5.15, that
WA (B(x*,r) = {f e WEF(B(x",r)) :f(x) =0 xeX).
The assumption p/r<Jy, allows us to deduce, from Theorem 5.6, that

1Ese oy Ml <G ooy, for all € WAF(BG", 1)),

for i€ {0, 1}, where the constants Cy and C; are independent of x* and r. Let 4; =
WI+i(B(x,r)) and B; = Wi+(R™"), ie{0,1}, then the result follows from the
operator interpolation property, which shows that cv C(l)*TC} O

ext —

We can now turn attention to the spherical setting and we begin by defining the
appropriate fractional subspace.

Definition 5.18. Let te (0, 1) and k>%! be a positive integer. Let Z = {¢}Y, denote

a set of distinct points in G(z,0)< S9!, then we define the local fractional order
Sobolev subspace as

WA (G(z,0)) = {fe WS (G(z,0)) : £ (&) =0, e EnG(z,0)}. (5.29)

Using Proposition 5.16, we can recast Theorem 4.3 in terms of fractional Sobolev
spaces, and its proof is completely analogous. In particular, following the proof
through to inequality (4.7), we have

2
2 2
||EG(:,(-))f||W§+f(Sdfl)<4’CXICA Z ||EB(x[A,r,»)fi‘|W2A’+I(Rd*1)a (5~30)

i=1

where

Ji= (1) )¢ gy € W2 T (B(xiy 1)), for ie{l,2}. (5.31)
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Let §; be as in Lemma 5.3. Let Cy and ¢y be as in (2.16), and set

4C
Ry = max{B,—O}. (5.32)
605k

Theorem 5.19. Let t€(0,1) and k>% be a positive integer. Let E denote a set of
distinct points on S?~! whose mesh norm h satisfies

(i) he(0,7/6), (i) Roh<Cy/3,
where Ry is given by (5.32). Let ze S, 0e (Roh, C4/3), and let Eg(-p) denote the

continuous extension operator given by (4.5). Then there exists a constant K >0,
independent of z and 0, such that

1Ec(e0) Ml ewisiny KON wsoroeny /€ W5 (G(z.0)). (5.33)

Proof. The conditions of the theorem guarantee that the mesh norms {pi}iz:1 of the

2

transformed point sets {X(Si)}i:1 satisfy (5.27). Since each f; vanishes at

Xéi), ie{1,2}, we can use Proposition 5.17, to continue inequality (5.30) as follows
2
2 (t)2 2
1EG o se(sin < ACKACT) D Il
i=1

~o\2 2
= (K11 £y

where KV = /4K, K AES& is independent of both z and . O
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